Back To Projects
Back To Projects

Structural damage classification of civil structures for a global oil and gas conglomerate

SUPA's experts scaled client's data annotation, accurately annotating 12,000+ images to boost damage classification workflow.

Problem statement

The Client required a specialised team to identify and assess damage of civil structures with a high accuracy of at least 90%.

SOLUTION

SUPA’s engineering experts collaborated closely with the Client by co-creating the annotation workflow and assembling a team of annotators experienced with engineering-related projects.

RESULT

SUPA’s team of 25 annotators successfully delivered the annotations with a consistent >90% accuracy.

Overview

The Problem

The Client is an integrated Oil & gas company looking to build an automated damage classification model that could:

  1. Identify the structure of interest within an image.
  2. Detect any structural damage and classify the severity of the damage based on the inspection team’s internal best practices.

The Client does not have an internal labeling team. Additionally, their previous 3rd party vendor struggled with generating annotations with a minimum accuracy of 90%.

The Solution

SUPA recognized the importance of understanding the task’s engineering context and the open-endedness associated with assessing structural damage. The team:

  1. Collaborated with the client to co-create labeling instructions and workflow: Our project managers worked closely with the client’s civil engineers through Proof-of-Concepts to curate a scalable and comprehensive workflow.

  1. Deployed expert annotators: Only annotators with proven experience in engineering projects were assigned to this project to ensure consistent, high-quality annotations.

  1. Ran a continuous feedback loop: Project managers conducted weekly feedback meetings to address new edge cases and expand the team’s knowledge base.

The Result

SUPA successfully delivered all the data required by the Client, completing over 22,500 annotations at a consistent >90% accuracy.

This enabled the Client to enhance their classification model, enabling a faster, safer, and more accurate inspection process.

Why SUPA?

SUPA’s engineering experts go beyond generic annotation work. They understand the underlying context of the task, working closely with the Client from Day 1 to build a tailored work process to successfully deliver the annotation project.

Other Projects

Discover the work we do

View All
View All

How SUPA helped a Mobile App Design company classify mobile screen interfaces into 117 different categories

SUPA helped a mobile app design company scale their interface database 16x in 3 months with 90% accuracy, freeing resources for AI innovation.

problem
The Client needed to expand its mobile app screen and interface design database to 117 categories to train their AI model.
solution
SUPA’s highly-trained workforce and proprietary platform enabled a streamlined workflow that ensured consistent throughput while maintaining high-quality standards.
result
The Client expanded and scaled up their database by 16 times within 3 months.
How SUPA helped a Mobile App Design company classify mobile screen interfaces into 117 different categories

Annotation for global agritech company

SUPA scales high-quality annotation output during seasonal data surges by 170% for a global agritech company that manages over 200 million trees

problem
Aerobotics needed to handle fluctuating, large volumes of data with high-quality annotations and a 24-hour turnaround, requiring scalable and flexible workflows.
solution
SUPA’s infrastructure enabled Aerobotics to scale up to 170% in a week without building internal annotation capacity or compromising quality.
result
SUPA helped Aerobotics validate up to 200,000 tree annotations within 24 hours at 97% accuracy, ensuring year-round volume flexibility and dependable service since 2020.
200 million trees
18 countries
Agritech
Aerial Imagery
Annotation for global agritech company